
Non-pulsed Lasers

USE THE APPROPRIATE TABLE TO GET THE MPE FORMULA USING EXPOSURE TIME (ALONG) AND WAVELENGTH (DOWN)

VISIBLE LASER	TABLE 1
UV LASER	TABLE 2
IR LASER	TABLE 3

INSERT DURATION TIME(t) INTO FORMULA TO GET RADIANT EXPOSURE MPE (in Jm⁻²)

IRRADIANCE (in Wm⁻²) = MPE (in Jm⁻²)/ DURATION TIME IN SECONDS

NOTE: Ocular MPEs for accidental exposure to visible laser beams.

RADIANT EXPOSURE MPE = 6.36Jm⁻² IRRADIANCE MPE = 25.4Wm⁻²

Exposure time t(s) Wavelength (nm)	10 ⁻¹³ to 10 ⁻¹¹	10 ⁻¹¹ to 10 ⁻⁹	10 ⁻⁹ to 1.8 x 10 ⁻⁵	1.8 x 10 ⁻⁵ to 10	10 to 10 ²	10 ² to 10 ⁴	10 ⁴ to 3 x 10 ⁴
400 to 600	1.5 x 10 ⁻⁴ C ₆ Jm ⁻²	2.7 x 10 ⁴ t ^{0.75} C ₆ Jm ⁻²	5 x 10 ⁻³ C ₆ Jm ⁻²	18t ^{0.75} C ₆ Jm ⁻²	100C ₃ Jm ⁻² using γ _p =11mrad	n ⁻²	$1C_3$ Wm ⁻² using γ_p =110mrad

 TABLE 1: Maximum Permissible Exposure (MPE) at the cornea for direct ocular exposure to laser radiation - Visible section.

Exposure time t(s) Wavelength (nm)	10 ⁻¹³ to 10 ⁻⁹ (< 1ns)	10 ^{.9} to 10 (1 ns to 10s)	10 to 10 ³ (10 to 1000s)	10 ³ to 3 x 10 ⁴ (1000 to 30,000s)
180 to 302.5			30 Jm ⁻²)/t Wm ⁻²)	
302.5 to 315	3 x 10 ¹⁰ Wm ⁻²	$ \begin{array}{l} t \dagger T_{1} & \\ C_{1} Jm^{-2} & \\ where \ C_{1} = 5.6 \ x \ 10^{3} t^{0.25} \\ t > T_{1} & \\ C_{2} Jm^{-2} & \\ where \ C_{2} = 10^{0.2(\lambda-295)} \\ T_{1} = 10^{0.8(\lambda-295)} \ x \ 10^{-15} s \end{array} $	C ₂ where C ₂	Jm ⁻² = 10 ^{0.2(2-295)}
315 to 400	-	$C_1 \text{ Jm}^{-2}$ where $C_1 = 5.6 \text{ x } 10^3 t^{0.25}$	10 ⁴ Jm ⁻² (10 ⁴ /t Wm ⁻²)	10Wm ⁻² (10t Jm ⁻²)

 TABLE 2: Maximum Permissible Exposure (MPE) at the cornea for direct ocular exposure to laser radiation - UV section.

Exposure time t(s) Wavelength (nm)	10 ⁻¹³ to 10 ⁻¹¹	10 ⁻¹¹ to 10 ⁻⁹	10 ⁻⁹ to 10 ⁻⁷	10 ⁻⁷ to 1.8 x 10 ⁻⁵	1.8 x 10 ⁻⁵ to 5 x 10 ⁻⁵	5 x 10 ⁻⁵ to 10 ⁻³	10 ⁻³ to 10	10 to 1000	1000 to 30,000
700 to 1050	1.5 x 10 ⁻⁴ x C ₄ C ₆ Jm ⁻²	2.7 x 10 ⁴ t ^{0.75} C ₄ C ₆ Jm ⁻²	5 x 10 ⁻³ C ₄ C ₆ Jm ⁻² 18t ^{0.75} C ₄ C ₆ Jm ⁻²				Retinal thermal I $\alpha \le 1.5$ mrad: 10 $\alpha > 1.5$ mrad:		
1050 to 1400	1.5 x 10 ⁻³ x C ₆ C ₇ Jm ⁻²	2.7 x 10 ⁵ t ^{0.75} C ₆ C ₇ Jm ⁻²	$5 \ge 10^{-2} C_6 C_7 \text{ Jm}^{-2}$ $90t^{0.72}$				₆ C ₇ Jm ⁻²	$t \le T_2$ $18t^{0.75}C_4C_6C_7$ $t > T_2$ $18C_4C_6C_7T_2$	
1400 to 1500		Wm ⁻²		10	3 Jm ⁻²		5600t ^{0.25} Jm ⁻²	-	
1500 to 1800 1800 to 2600		Wm ⁻² Wm ⁻²	$\frac{10^4 \text{ Jm}^{-2}}{10^3 \text{ Jm}^{-2}} = 5600t^{0.25}$				1000	Wm ⁻²	
2600 to 1,000,000	1011	Wm ⁻²	100 Jm ⁻²		5600t ^o	^{.25} Jm ⁻²	Jm ⁻²		

TABLE 3: Maximum Permissible Exposure (MPE) at the cornea for direct ocular exposure to laser radiation - IR section.

Pulsed Lasers

Step 1

Calculate *MPEsingle* for a single pulse using the pulse-length as the duration time, <u>NOT</u> 0.25s for visible lasers and 10s for invisible lasers as used in non-pulse lasers

Step 2

Calculate *MPE*train for a train of pulses using the formula: MPE train = $MPE_{single} \times N^{-0.25}$ Where N is the number of pulses in the duration time (i.e. 0.25s for visible lasers and 10s for invisible lasers)

Step 3

Calculate *MPEaverage* using the formula $MPE_{average} = (MPE_{duration-time}) / N$ Where $MPE_{duration-time} = \text{Radiant} \exp O(1 + 1)$ exposure MPE for a non-pulse laser. And N is the number of pulses in the duration time (i.e. 0.25s for visible lasers and 10s for invisible lasers)

The most restrictive of *MPE*single, *MPE*train and *MPE*average is taken as the MPE.

Example

What is the MPE for accidental ocular exposure for a pulsed argon ion laser which emits 10 pulses per second at 488nm with a pulse duration of 1ms?

Step 1

Calculate MPEsingle. Using the duration time as the pulse length and using table 1 we see that the MPE is given by:

 $MPE = 18t^{0.75} C_6 Jm^{-2}$ By putting the numbers in we get $MPE_{single} = 0.1 \text{Jm}^{-2}$

Step 2

Calculate MPEtrain.

We need to know the number of pulses, N, in the duration time, 0.25s. For 10 pulse per second this equals 2.5. We use the formula: $MPE_{train} = MPE_{single} \times N^{-0.25}$ To get: $MPE_{train} = 0.08 Jm^{-2}$

Step 3

Calculate MPEaverage. This is given by the MPE calculated with an exposure time of 0.25s divided by the number of pulses, or $MPE_{average} = (MPE_{duration - time}) / N$ which is 6.36/2.5 $MPE_{average} = 2.54 \text{Jm}^{-2}$

So $MPE_{single} = 0.1 \text{Jm}^{-2}$, $MPE_{train} = 0.08 \text{Jm}^{-2}$ and $MPE_{average} = 2.54 \text{Jm}^{-2}$

We can now see that *MPE*train is the most restrictive with a value of: $MPE_{train} = 0.08 \text{Jm}^{-2}$ So the MPE for this pulsed laser is <u>0.08 Jm}^{-2}</u>

Exposure time t(s) Wavelength (nm)	10 ⁻¹³ to 10 ⁻¹¹	10 ⁻¹¹ to 10 ⁻⁹	10 ⁻⁹ to 1.8 x 10 ⁻⁵	1.8 x 10 ⁻⁵ to 10	10 to 10 ²	10 ² to 10 ⁴	10 ⁴ to 3 x 10 ⁴
400 to 600	1.5 x 10 ⁻⁴ C ₆ Jm ⁻²	2.7 x 10 ⁴ 1 ^{0.75} C ₆ Jm ⁻²	5 x 10 ⁻³ C ₆ Jm ⁻²	18t ^{0.75} C ₆ Jm ⁻²	100C ₃ Jm ⁻² using γ _p =11mrad	1 ⁻²	$1C_3$ Wm ⁻² using $\gamma_p=110$ mrad

 TABLE 1: Maximum Permissible Exposure (MPE) at the cornea for direct ocular exposure to laser radiation - Visible section.

Exposure time t(s) Wavelength (nm)	10 ⁻¹³ to 10 ⁻⁹ (< 1ns)	10 ^{.9} to 10 (1 ns to 10s)	10 to 10 ³ (10 to 1000s)	10 ³ to 3 x 10 ⁴ (1000 to 30,000s)
180 to 302.5			30 Jm ⁻²)/t Wm ⁻²)	
302.5 to 315	3 x 10 ¹⁰ Wm ⁻²	$ \begin{array}{l} t \dagger T_{1} & \\ C_{1} Jm^{-2} & \\ where \ C_{1} = 5.6 \ x \ 10^{3} t^{0.25} \\ t > T_{1} & \\ C_{2} Jm^{-2} & \\ where \ C_{2} = 10^{0.2(\lambda-295)} \\ T_{1} = 10^{0.8(\lambda-295)} \ x \ 10^{-15} s \end{array} $	C ₂ where C ₂	Jm ⁻² = 10 ^{0.2(2-295)}
315 to 400	-	$C_1 \text{ Jm}^{-2}$ where $C_1 = 5.6 \text{ x } 10^3 t^{0.25}$	10 ⁴ Jm ⁻² (10 ⁴ /t Wm ⁻²)	10Wm ⁻² (10t Jm ⁻²)

 TABLE 2: Maximum Permissible Exposure (MPE) at the cornea for direct ocular exposure to laser radiation - UV section.

Exposure time t(s) Wavelength (nm)	10 ⁻¹³ to 10 ⁻¹¹	10 ⁻¹¹ to 10 ⁻⁹	10 ⁻⁹ to 10 ⁻⁷	10 ⁻⁷ to 1.8 x 10 ⁻⁵	1.8 x 10 ⁻⁵ to 5 x 10 ⁻⁵	5 x 10 ⁻⁵ to 10 ⁻³	10 ⁻³ to 10	10 to 1000	1000 to 30,000
700 to 1050	1.5 x 10 ⁻⁴ x C ₄ C ₆ Jm ⁻²	2.7 x 10 ⁴ t ^{0.75} C ₄ C ₆ Jm ⁻²	5 x 10 ⁻³ C ₄ C ₆ Jm ⁻² 18t ^{0.75} C ₄ C ₆ Jm ⁻²				Retinal thermal hazard $\alpha \le 1.5$ mrad: $10C_4C_7$ Wm ⁻² $\alpha > 1.5$ mrad:		
1050 to 1400	1.5 x 10 ⁻³ x C ₆ C ₇ Jm ⁻²	2.7 x 10 ⁵ t ^{0.75} C ₆ C ₇ Jm ⁻²	$5 \ge 10^{-2} C_6 C_7 Jm^{-2}$ $90t^{0.75} C_6 C_7 Jm^{-2}$				$t \le T_2$ $18t^{0.75}C_4C_6C_7T_2$ $t > T_2$ $18C_4C_6C_7T_2$		
1400 to 1500		Wm ⁻²		10 ³ Jm ⁻² 5600t ^{0.25} Jm ⁻²					
1500 to 1800 1800 to 2600		Wm ⁻² Wm ⁻²	$\frac{10^4 \text{ Jm}^2}{10^3 \text{ Jm}^2} = 5600t^{0.25}$				1000	Wm ⁻²	
1800 10 2000			Jm ⁻²				1000	** 111	
2600 to 1,000,000	10 ¹¹	Wm ⁻²	100 Jm ⁻²		5600t ^o	^{.25} Jm ⁻²			

TABLE 3: Maximum Permissible Exposure (MPE) at the cornea for direct ocular exposure to laser radiation - IR section.